Integration of Epigenetic Data in Bayesian Network Modeling of Gene Regulatory Network
نویسندگان
چکیده
The reverse engineering of gene regulatory network (GRN) is an important problem in systems biology. While gene expression data provide a main source of insights, other types of data are needed to elucidate the structure and dynamics of gene regulation. Epigenetic data (e.g., histone modification) show promise to provide more insights into gene regulation and on epigenetic implication in biological pathways. In this paper, we investigate how epigenetic data are incorporated into reconstruction of GRN. We encode the histone modification data as prior for Bayesian network inference of GRN. Bayesian framework provides a natural and mathematically tractable way of integrating various data and knowledge through its prior. Applying to the gene expression data of yeast cell cycle, we demonstrate that integration of epigenetic data improves the accuracy of GRN inference significantly. Furthermore, fusion of gene expression and epigenetic data shed light on the interactions between genetic and epigenetic regulations of gene expression.
منابع مشابه
RNA-Seq Bayesian Network Exploration of Immune System in Bovine
Background: The stress is one of main factors effects on production system. Several factors (both genetic and environmental elements) regulate immune response to stress. Objectives: In order to determine the major immune system regulatory genes underlying stress responses, a learning Bayesian network approach for those regulatory genes was applied to RNA-...
متن کاملIdentification of miR-24 and miR-137 as novel candidate multiple sclerosis miRNA biomarkers using multi-staged data analysis protocol
Many studies have investigated misregulation of miRNAs relevant to multiple sclerosis (MS) pathogenesis. Abnormal miRNAs can be used both as candidate biomarker for MS diagnosis and understanding the disease miRNA-mRNA regulatory network. In this comprehensive study, misregulated miRNAs related to MS were collected from existing literature, databases and via in silico prediction. A multi-staged...
متن کاملModeling gene regulatory networks: Classical models, optimal perturbation for identification of network
Deep understanding of molecular biology has allowed emergence of new technologies like DNA decryption. On the other hand, advancements of molecular biology have made manipulation of genetic systems simpler than ever; this promises extraordinary progress in biological, medical and biotechnological applications. This is not an unrealistic goal since genes which are regulated by gene regulatory ...
متن کاملIntelligent multi-agent modeling of the interbank network and evaluation of the impact of regulatory policies
agent-based modeling is an emerging computational technique that makes it possible to simulate complex economic systems, including the banking network, with a bottom-up approach. In this paper, the country's banking network is simulated with an intelligent multi-agent modeling model and indicates that these agents behave based on the adaptive learning. This modeling has been done with the aim o...
متن کاملCMGRN: a web server for constructing multilevel gene regulatory networks using ChIP-seq and gene expression data
ChIP-seq technology provides an accurate characterization of transcription or epigenetic factors binding on genomic sequences. With integration of such ChIP-based and other high-throughput information, it would be dedicated to dissecting cross-interactions among multilevel regulators, genes and biological functions. Here, we devised an integrative web server CMGRN (constructing multilevel gene ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011